
CS 4530: Fundamentals of Software Engineering

Module 11: Test Adequacy

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Give different reasons why you might want to test
• List the properties of a good test
• Use equivalence classes to design a TDD test suite
• Explain 3 measures of code coverage
• Use mutation testing to judge the completeness of a test

suite

2

Why do we test?
• Test Driven Development

• Does the SUT satisfy its specification?
• “Good” test suite exercises the entire specification

• Regression Testing
• Did something change since some previous version?
• Prevent bugs from (re-)entering during maintenance.
• “Good” test suite detects bugs that we introduce in code

• Acceptance Testing
• Does the SUT satisfy the customer
• “Good” test suite answers: Are we building the right system ?

3

What makes for a good test (suite)?
• Desirable properties of test suites:

• Find bugs
• Run automatically
• Are relatively cheap to run

• Desirable properties of individual tests:
• Understandable and debuggable
• No false alarms (not “flaky”)

4

Related Terminology:
“test smells”

Good Tests have Strong Oracles
• Test oracle defines criteria for when test should fail
• What kind of oracle should we choose?

• Function returns the exact “right” answer
• Function returns an acceptable answer
• Returns the same value as last time
• Function returns without crashing
• Function crashes (as expected)
• Function has the right effects on its environment

• And no others

5

A good test is self-contained
• Contain all information necessary to set up,

execute, and tear down environment
• Leaves no trace of its execution
• So it doesn’t matter in what order your tests run.

6“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

Jargon word:
“hermetic”

// NOT HERMETIC
// assumes starting ID of 4, leaves an extra Avery in the application
describe('Create student', () => {
 it('should return an ID', async () => {
 const createdStudent = await client.addStudent('Avery');
 expect(createdStudent.studentID).toBeGreaterThan(4);
 });
})

Good Tests Aren’t Brittle
• Brittle tests make invalid assumptions about the

specification
• Specifications often leave room for undefined

behaviors: details that are subject to change
• Brittle tests will fail unexpectedly if that undefined

behavior changes

7

// BRITTLE!
// Assumes the application shows this specific error message
// Does the specification require this?
it('Should an error if there is no layer called "objects"', async () => {
 expect(() => town.initializeFromMap(testingMaps.noObjects))
 .toThrowError('There is no layer called "objects"');
});

Good Tests are Clear
• Clear tests help ensure that the bug is in the SUT, not in the test

itself.

8“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

// not clear: if this fails, is the bug in SUT or in the test itself?
it('remove() only removes one', () =>{
 const tree = makeBST();
 for (let i = 0; i < 1000; ++i) {
 tree.add(i);
 }
 for (let j = 0; j < 1000; ++j) {
 for (let i = 0; i < 1000; ++i) {
 if (i != j) tree.remove(i);
 }
 expect(tree.contains(j)).
 toBe(true);
 }
 });

Good Tests produce informative data when
they fail
• If this test fails, all you get is "expected: true; received: false"
• Not very helpful!

9“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

// not clear: if this fails, is the bug in SUT or in the test itself?
it('remove() only removes one', () =>{
 const tree = makeBST();
 for (let i = 0; i < 1000; ++i) {
 tree.add(i);
 }
 for (let j = 0; j < 1000; ++j) {
 for (let i = 0; i < 1000; ++i) {
 if (i != j) tree.remove(i);
 }
 expect(tree.contains(j)).
 toBe(true);
 }
 });

Good Tests Invoke Public APIs Only
• Interact with SUT as a client of the SUT would:

• Public methods of classes
• Exported members of modules

10“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

 public initializeFromMap(map: ITiledMap) {
 ...
 this._validateInteractables();
 }

 // can't test this directly..
 // instead, test via inititalizeFromMap
 private _validateInteractables() {
 // Test Me!
 }

It might be tempting to make
_validateInteractables public and
test it directly: but that’s not
how clients would call it!

Good Tests Aren’t Flaky
• A flaky test is one that may fail

unpredictably, or due to causes other
than the SUT or the test itself.

• Flaky test failures are false alarms
• Most common cause of flaky test

failures: “async wait” - tests that expect
some asynchronous action to occur
within a timeout

11
[Luo et al, FSE 2014 “An empirical analysis of flaky tests”]

Async Wait
37%

Test Order
Dependency

17%

Concurrency
17%Resource Leak

10%

Network
9%

Time
4%

Random
3%

Floating Point
3% Unordered

Collections
1%

Pattern for testing an async function

12

import axios from 'axios'

async function echo(str: string) : Promise<string> {
 const res =
 await axios.get(`https://httpbin.org/get?answer=${str}`)
 return res.data.args.answer
}

test('echo should return its argument', async () => {
 expect.assertions(1)
 await expect(echo("33")).resolves.toEqual("33")

})

Building Test Suites From Specifications (TDD)
• First task is to enumerate the different classes of behaviors in the

specification.
• Example:

• Requesting the transcript for a student ID.
• Two cases:

• The ID belongs to a student
• The ID is not the ID of any student

• The SUT should work similarly for all inputs in each case.

13

Jargon: these are sometimes
called "equivalence classes" of
inputs.

Building Test Suites From Specifications: Zip
Code Lookup
• USPS ZIP code lookup tool accepts a zip code

as input, and outputs:
• The “place names” that correspond to that

ZIP code, or
• “Invalid zip code”

• Strategy:
• Determine the input equivalence classes,

boundary conditions
• Write tests for those inputs

14

Building Test Suites From Specifications: Zip
Code Lookup
• Need to test behavior when the input is:

• Not a 5 digit number
• A 5 digit numbers

• A valid ZIP code
• With one place name
• With multiple place names

• Not a valid ZIP code
• Test at least one input from each class, plus boundaries

(e.g. 4 digit numbers, 6 digit numbers, no numbers)
• Encode the expected output of the system for each test

15

All possible inputs

All 5 digit numbers

Valid ZIP codes
ZIP codes
with
multiple
place
names

Example: TicTacToe
• What are the possible states of a tictactoe game?

• Board is full (draw)
• Board is not full

• Board not full, one player has won
• Board not full, X to move
• Board not full, O to move

• What are the possible inputs to the tictactoe game?
• X moves
• O moves
• Someone else tries to move
• X or O leaves the game

• Can make a graph out of these

A piece of the TicTacToe Graph

Board not full,
X to move

Board Full

Board not full,
O to move

X wins

Error

Your tests should exercise
each of these arrows.

Make sure the regions have the right
boundaries.
• Test at and near boundaries

• Barely legal, barely illegal inputs
• < vs <=
• Empty inputs?

• Integer overflows / buffer overflows
• ComAir crew scheduling
• problem due to a list getting more than 32767

elems
• https://arstechnica.com/uncategorized/2004/1

2/4490-2/

18

https://arstechnica.com/uncategorized/2004/12/4490-2/
https://arstechnica.com/uncategorized/2004/12/4490-2/

Building Tests from Specifications
(TDD)
• The real specification is often implicit.
• When delivering a feature, it is important to deliver tests to

ensure that the feature keeps working this way in the future
• You may have specific domain knowledge that future

developers who touch the code do not
• Specifications are hard to interpret and check, automated

tests are easy (consider individual project…)
• Beyoncé rule: “If you liked it you should have put a ring test

on it” (SoftEng @ Google)

19

When have I written enough tests?
• Hard to verify that your tests cover the whole

specification
• Especially if the specification is only in someone's

head!
• But easy to verify that your tests cover all of your

code.
• This is called "Code Coverage"
• Coverage gives a quantitative measure of how much

of your code is exercised by your tests
• If the code isn't exercised, it's definitely not tested!

Measures of code coverage
• Statement or Block coverage
• Branch coverage
• Path coverage

21

Statement Coverage
• Each line (or part of) the code should be executed at

least once in the test suite
• Adequacy criterion: each statement must be executed at

least once
Coverage: # executed statements

 # statements

22

Branch Coverage
• Adequacy criterion: each branch in the control-flow

graph must be executed at least once
coverage: # executed branches

 # branches

• Subsumes statement testing criterion because
traversing all edges implies traversing all nodes

• Most widely used criterion in industry

23

Tools for measuring coverage
• Coverage is computed automatically while the tests

execute
• jest --coverage

• Makes it easy

24

*see example at https://github.com/philipbeel/example-typescript-nyc-mocha-coverage

Every Branch Executed != Every Behavior
Executed
• In this example, all branches are

covered by the test
• However: magic will crash under

certain inputs

25

function magic(x: number, y: number) {
 let z = 0;
 if (x !== 0) {
 z = x + 10;
 } else {
 z = 0;
 }
 if (y > 0) {
 return y / z;
 } else {
 return x;
 }
}
test(“100% branch coverage", () => {
 expect(magic(1, 22)).toBe(2); //T1
 expect(magic(0, -10)).toBe(0); //T2
});

✅ T1

✅ T2

✅ T1

✅ T2

Path Coverage is Exhaustive
• Sometimes a fault is only

manifest on a particular path
• E.g., choosing the left branch and

then choosing the right branch.
(dashed blue path)

• But the number of paths can be
infinite
• E.g., if there is a loop.

• There are ways to bound the
number of paths to cover.

26

100% Coverage may be Impossible
• Path coverage (even without loops)

• Dependent conditions: if (x) A; B; if (x) C; D
• A-B-D is a path in the flow graph, but will never happen because this code

will always execute either A and C or neither.

• Branch coverage
• Dead Branches e.g., if (x < 0) A; else if (x == 0) B; else if (x > 0) C;

• (x > 0) test will always succeed

• Statement coverage
• Dead code (e.g., defensive programming)

27

Another approach: Adversarial Testing
• Goal: “A good test suite finds all of the bugs”
• Problem: How to know the bugs that we might have

made?
• Strawman - “Seeded Faults”:

• Create N variations of the codebase, each with a
single manually-written defect

• Evaluate the number of defects detected by test
suite

• Test suite is “good” if it finds all of the bugs you can
think of

28

Mutation Analysis tests the Tests
• Idea: What if many (real) bugs could be represented by a single, one-

line “mutation” to the program?

29

public contains(location: PlayerLocation): boolean {
 return (
 location.x + PLAYER_SPRITE_WIDTH / 2 > this._x &&
 location.x - PLAYER_SPRITE_WIDTH / 2 < this._x + this._width &&
 location.y + PLAYER_SPRITE_HEIGHT / 2 > this._y &&
 location.y - PLAYER_SPRITE_HEIGHT / 2 < this._y + this._height
);
}

Correct code for checking whether one sprite contains another

public contains(location: PlayerLocation): boolean {
 return (
 location.x + PLAYER_SPRITE_WIDTH / 2 < this._x &&
 location.x - PLAYER_SPRITE_WIDTH / 2 < this._x + this._width &&
 location.y + PLAYER_SPRITE_HEIGHT / 2 > this._y &&
 location.y - PLAYER_SPRITE_HEIGHT / 2 < this._y + this._height
);
}

Mutated (and buggy) code for ‘Contains”

Mutation Testing Judges the tests
• Mutation testing is a way of judging whether you

have written enough tests.
• It is helpful to think of mutation testing as a game in

which you play against an adversary– in IP1, this
was the autograder

• In mutation testing, the adversary generates a set of
“mutants” – buggy versions of a reference solution.

• You win against the adversary if your tests reject all
of the mutants.

30

The Autograder Game:
Setup (Part 1)

31

Your code

Your tests

Player (You) Opponent (Them)

Their tests Their code

Your code
passes
your tests

They have a
reference
implementation,
which is hidden

They also have
some tests (also
hidden)

Their code
passes their
tests

The Autograder Game:
Setup (Part 2)

32

Your code

Your tests

Player (You) Opponent (Them)

Their tests Their code

Their code

Their code

Their code

They generate
some number of
variants of their
code, which
contain bugs.

These variants
are sometimes
called “mutants”

The Autograder Game: Play

33

Your code

Your tests

Player (You) Opponent (Them)

Their tests Their code

Their code

Their code

Their code Your code is run
against their
tests, and your
tests are run
against their
buggy mutants

The Autograder Game: Your Winning
Position

34

Your code

Your tests

Player (You) Opponent (Them)

Their tests Their code

Their code

Their code

Their code

The Autograder Game: Losing Position #1

35

Your code

Your tests

Player (You) Opponent (Them)

Their tests Their code

Their code

Their code

Their code
Oh no! Their
tests have
uncovered a bug
in your code!

Remedy: find the
bug and fix it.

The Autograder Game: Losing Position #2

36

Your code

Your tests

Player (You) Opponent (Them)

Their tests Their code

Their code

Their code

Their code

Oh no! Your tests have accepted a
variant that should have been
rejected.

Remedy: strengthen your tests
• In this situation, you need to add some tests.
• Then you should check that your code passes your

revised tests.

37

Hmm, what did I miss?
• Different versions of the game may give you

different clues about what you missed.
• For IP1, we ran each variant against “their tests”

and noted which tests failed
• The you got a “Clue”, which consists of the titles of

the tests that failed
• This was supposed give you an idea of what

requirements you need to add tests for.
• Other systems do different things– we’ll talk about

this in Module 12.

38

Mutation Analysis tests the Tests
• Automatically mutates SUT to create mutants, each a single change to

the code
• Runs each test on each mutant, until finding that a mutant is detected

by a test
• Can be a time-consuming process to run, but fully automated
• State-of-the-art mutation analysis tools:

• Pit (JVM)
• Stryker (JS/TS, C#, Scala)

39

The Stryker Game: The Opening

40

Your code

Your tests

Player (You) Opponent (Them)

Mutant 2

Mutant 3

Mutant 1

The Stryker Game: Result of one round of
play

41

Your code

Your tests

Player (You) Opponent (Them)

Mutant 2

Mutant 3

Mutant 1

The Stryker Game: Result of one round of
play

42

Your code

Your tests

Player (You) Opponent (Them)

Mutant 2

Mutant 3

Mutant 1

The Stryker Game: a winning position

43

Your code

Your tests

Player (You) Opponent (Them)

Mutant 2

Mutant 3

Mutant 1

Hmm, now that you look
closer, you see that
mutant 3 isn't actually a
bug.

The Stryker Game: a losing position

44

Your code

Your tests

Player (You) Opponent (Them)

Mutant 2

Mutant 3

Mutant 1

Hmm, mutant #3 really
demonstrates a bug. Time
to strengthen your tests

Mutation Report Shows Undetected Mutants
• Mutants “detected” are bugs that are found
• Mutants “undetected” might be bugs, or could be

equivalent to original program (requires a human to
tell)

45

Use Mutation Analysis While Writing Tests
• When you feel “done” writing tests, run a mutation

analysis
• Inspect undetected mutants, and try to strengthen

tests to detect those mutants

46

Detailed mutation report for “overlaps” method - two mutants were not detected!

Undetected Mutants May Not Be Bugs
• Unfortunately, we can not automatically tell if an

undetected mutant is a bug or not

47

This mutant is equivalent to the original program: Even th
the error message changed, the specification doesn’t indi
what error message should be thrown.

• Here the mutation was to change the error message (from something informative to an empty
string)

• Clearly that doesn't change the behavior of the program, just the error message that is generated.
• We chose not to test for this because the text of this error message was not specified in the

specification
• Testing for this particular error message would have been brittle

Undetected Mutants May Not Be Bugs
• Unfortunately, we can not automatically tell if an

undetected mutant is a bug or not

48

• This mutant is equivalent to the original program.
Even without the check for undefined, an error is
still thrown when the undefined layer is
dereferenced on the following line.

Are mutants a Valid Substitute for Real
Faults? Probably yes.
• Do mutants really represent real bugs?
• Researchers have studied the question of

whether a test suite that finds more
mutants also finds more real faults

• Conclusion: For the 357 real faults studied,
yes

• This work has been replicated in many other
contexts, including with real faults from
student code

49

Activity: strengthening a test suite
• Enhance the test suite of the transcript server to

improve line coverage and mutation coverage
• Download on Module 11 webpage

50

Review
• Now that you have come to the end of this lesson,

you should be able to:
• Give different reasons why you might want to test
• List the properties of a good test
• Use equivalence classes to design a TDD test suite
• Explain 3 measures of code coverage
• Use mutation testing to judge the completeness of a test

suite

51

	CS 4530: Fundamentals of Software Engineering��Module 11: Test Adequacy
	Learning Objectives for this Lesson
	Why do we test?
	What makes for a good test (suite)?
	Good Tests have Strong Oracles
	A good test is self-contained
	Good Tests Aren’t Brittle
	Good Tests are Clear
	Good Tests produce informative data when they fail
	Good Tests Invoke Public APIs Only
	Good Tests Aren’t Flaky
	Pattern for testing an async function
	Building Test Suites From Specifications (TDD)
	Building Test Suites From Specifications: Zip Code Lookup
	Building Test Suites From Specifications: Zip Code Lookup
	Example: TicTacToe
	A piece of the TicTacToe Graph
	Make sure the regions have the right boundaries.
	Building Tests from Specifications (TDD)
	When have I written enough tests?
	Measures of code coverage
	Statement Coverage
	Branch Coverage
	Tools for measuring coverage
	Every Branch Executed != Every Behavior Executed
	Path Coverage is Exhaustive
	100% Coverage may be Impossible
	Another approach: Adversarial Testing
	Mutation Analysis tests the Tests
	Mutation Testing Judges the tests
	The Autograder Game: �Setup (Part 1)
	The Autograder Game: �Setup (Part 2)
	The Autograder Game: Play
	The Autograder Game: Your Winning Position
	The Autograder Game: Losing Position #1
	The Autograder Game: Losing Position #2
	Remedy: strengthen your tests
	Hmm, what did I miss?
	Mutation Analysis tests the Tests
	The Stryker Game: The Opening
	The Stryker Game: Result of one round of play
	The Stryker Game: Result of one round of play
	The Stryker Game: a winning position
	The Stryker Game: a losing position
	Mutation Report Shows Undetected Mutants
	Use Mutation Analysis While Writing Tests
	Undetected Mutants May Not Be Bugs
	Undetected Mutants May Not Be Bugs
	Are mutants a Valid Substitute for Real Faults? Probably yes.
	Activity: strengthening a test suite
	Review

